快速排序
快速排序(Quick Sort)由图灵奖获得者Tony Hoare发明,被列为20世纪十大算法之一。冒泡排序的升级版,交换排序的一种。快速排序的时间复杂度为O(nlog(n))。
快速排序算法的核心思想:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后分别对这两部分继续进行排序,以达到整个记录集合的排序目的。
- 快速排序的时间性能取决于递归的深度。
- 当pivot_key恰好处于记录关键码的中间值时,大小两区的划分比较均衡,接近一个平衡二叉树,此时的时间复杂度为O(nlog(n))。
- 当原记录集合是一个正序或逆序的情况下,分区的结果就是一棵斜树,其深度为n-1,每一次执行大小分区,都要使用n-i次比较,其最终时间复杂度为O(n^2)。
- 在一般情况下,通过数学归纳法可证明,快速排序的时间复杂度为O(nlog(n))。
- 但是由于关键字的比较和交换是跳跃式的,因此,快速排序是一种不稳定排序。
- 同时由于采用的递归技术,该算法需要一定的辅助空间,其空间复杂度为O(logn)。
数据过万,冒泡算法基本不可用。n平方的时间复杂度:数据扩大10倍,耗时增加100倍。 对于Python的列表,反序遍历比正序遍历还是要消耗一定的时间的。 快速排序在数据较大时,其威力显现,但不够稳定,总体还是维护了nlog(n)的复杂度。
version 1
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author: Liu Jiang
# Python 3.5
# 快速排序
class SQList:
def __init__(self, lis=None):
self.r = lis
def swap(self, i, j):
"""定义一个交换元素的方法,方便后面调用。"""
temp = self.r[i]
self.r[i] = self.r[j]
self.r[j] = temp
def quick_sort(self):
"""调用入口"""
self.qsort(0, len(self.r)-1)
def qsort(self, low, high):
"""递归调用"""
if low < high:
pivot = self.partition(low, high)
self.qsort(low, pivot-1)
self.qsort(pivot+1, high)
def partition(self, low, high):
"""
快速排序的核心代码。
其实就是将选取的pivot_key不断交换,将比它小的换到左边,将比它大的换到右边。
它自己也在交换中不断变换自己的位置,直到完成所有的交换为止。
但在函数调用的过程中,pivot_key的值始终不变。
:param low:左边界下标
:param high:右边界下标
:return:分完左右区后pivot_key所在位置的下标
"""
lis = self.r
pivot_key = lis[low]
while low < high:
while low < high and lis[high] >= pivot_key:
high -= 1
self.swap(low, high)
while low < high and lis[low] <= pivot_key:
low += 1
self.swap(low, high)
return low
def __str__(self):
ret = ""
for i in self.r:
ret += " %s" % i
return ret
if __name__ == '__main__':
sqlist = SQList([4, 1, 7, 3, 8, 5, 9, 2, 6, 0, 123, 22])
sqlist.quick_sort()
print(sqlist)
version 2
def quick_sort(nums):
# 封装一层的目的是方便用户调用
def qsort(lst, begin, end):
if begin >= end:
return
i = begin
key = lst[begin]
for j in range(begin+1, end+1):
if lst[j] < key:
i += 1
lst[i], lst[j] = lst[j], lst[i]
lst[begin], lst[i] = lst[i], lst[begin]
qsort(lst, begin, i-1)
qsort(lst,i+1,end)
qsort(nums, 0, len(nums)-1)
参考资料
《大话数据结构》